تقنية الاستشعار عن بعد Remote Sensing
تمهيد
في هذا العصر المتسم بالتطور و التقدم في مجالات المعرفة الإنسانية و التغيرات العظيمة في مجالات الاتصال و التكنولوجيا ، و عظم المنافسة الاقتصادية ، صار التوجه نحو دفع الكفاءة متطلباً و هدفاً أساسياً لكل المؤسسات و الدول و أصبح لزاماً على كل من أراد التفوق و التقدم على كافة الأصعدة العلمية و الوظيفية ، أن يتسلح بالمعرفة المتعمقة ، و المقدرات المتنوعة و القابلية و المواكبة و المنافسة . لقد غدونا في عصر لا يعرف اليأس و أضحت فيه التقانات تجدد بمتواليات هندسية و أخذت المعرفة تتسارع مع الأنفاس و غدا الشعار في كل مكان: "المعرفة هي القوة ، التكنولوجيا هي المحرك" وفي المشاريع الهندسية لا يعتمد نجاح هذه المشاريع على المعرفة العلمية و العملية بالعلوم الهندسية فقط ، بل لا بد لإنجاح هذه المشاريع الهندسية و خاصة في مجال استكشاف و استخراج الخامات من ربط المعلومات الهندسية بمعلومات وفيرة في مجالات الإدارة و الاقتصاد و أدوات اتخاذ القرار و هكذا لا يتم اتخاذ قرار تنفيذ هذه المشاريع الضخمة إلا و فق معطيات الجدوى الاقتصادية. و حتى يتم تحديد دراسة جدوى المشاريع التعدينية يتطلب ذلك دراسة جيولوجية كاملة عن المنطقة بما يسمى (Regional geology) ثم يتتبعها البحث الجيوكيميائي (Geochemistry) و البحث الجيوفيزيقي (Geophysics) و الكثير من العمليات مثل الاستشعار عن بعد (Remotesence) و الذي أتاح الحصول على ملايين المرئيات التي إستخدمت لدراسة و تقييم موارد الأرض الطبيعية والمراقبات الملاحية والميدانية والاستخدامات الاستراتيجية و العسكرية لابعد مدى و التعمق في اقاصي الفضاء الخارجي بسرعة الضوء نفسه.
عودة تاريخية الى نشأءة علم الاستشعار
يعتبر أبسط أجهزة الاستشعار عن بعد حالياً هي آلة التصوير العادية
التي تستخدم الضوء المنعكس عن الأجسام تماماً كالعين البشرية وقد شرحت الآلية مسبقاً مند حوالى سنة411ه/1021م على يد العالم العربي المسلم ومؤسس علم البصريات ابن الهيثم. لتظهر بعد تطورات خاطفة لعلم الضوئيات 1887م ظهرت فكرة استخدام الموجات الكهرومغناطيسية لكشف الأهداف مع اكتشاف الأمواج الكهرومغناطيسية على يد الفيزيائي الألماني هنيرتش هيرتز (Heinrich Hertz) والذي اكتشف أيضا أن هذه الأمواج تنعكس عند اصطدامها بالأجسام المعدنية والعازلة. وفي عام 1903م تمكن المهندس الألماني كريستيان هولسماير (Christian Hulsmeyer) من إجراء تجربه تمكن من خلالها كشف وجود سفينة من خلال الضباب ولكن دون تحديد المسافة. وفي عام 1921م تمكن ألبرت هول (Albert Hull) من اختراع أول أشكال الصمام الإلكتروني المسمى بالمجنيترون (Magnetron) وهو مذبذب قادر على توليد ترددات عالية جدا وبقدرات عالية. وفي عام 1922م ظهر أول نظام لرادار طويل المدى نسبيا على يـــدي العـــالم الايطالي المشهور ماركوني (Marconi). وفي عام 1930م تمكن المهندس الأمريكي هايلاند (Lawrence A. Hyland) وهو في مختبر البحرية الأمريكية من كشف أول طائرة باستخدام ما يسمى نظام كشف الأهداف بالراديو (الأمواج الكهرومغناطيسية) وكان التردد المستخدم ثلاثة وثلاثين ميجاهيرتز. وفي عام 1934م تمكنت البحرية الأمريكية من تصميم أول رادار نبضي لكشف وجود الطائرات دون تحديد بعدها وكان يعمل على تردد ستين ميجاهيرتز وقد وصل مداه لأربعين كيلومتر. وفي 1935 حصل العالم الإنكليزي واتسون واط (Watson-Watt) على براءة اختراع لرادار يستطيع أن يحدد المسافة. وفي عام 1936م تم اختراع صمام إلكتروني آخر وهو الكلايسترون (Klystron) والذي يستخدم لتوليد وتضخيم الإشارات في نطاق الأمواج الدقيقة وقد لعب مع الميجنيترون دورا كبيرا في تطوير أنظمة الرادار الحديثة. وفي عام 1937م تم تركيب أول رادار على ظهر المدمرة الأمريكية "ليري" وظهرت كذلك الرادارات التي تتحكم في المدافع المضادة للطائرات الحربية ورادارات الإنذار المبكر بعيدة المدى. وفي عام 1939م تم اختراع المجنيترون ذي الفجوة (cavity magnetron) على يد المهندسين البريطانيين جون راندال وهاري بوت (John Randall & Harry Boot) وهذا المولد وعلى العكس من المجنيترون العادي قادر على توليد ترددات في منطقة الميكروويف وقادر كذلك على إنتاج قدرات كبيرة جدا تصل لمئات الكيلوطات. لقد كان هذا الاختراع الأساس التي قامت عليه أنظمة الرادار الحديث حيث تتطلب الرادارات ترددات وقدرات بث عالية جدا فالترددات العالية تلزم لتصغير حجم الهوائيات وكذلك لتقليل عرض أشعة الرادار لزيادة دقة تحديد موقع الهدف أما قدرات البث العالية فتلزم لزيادة المدى الذي يمكن للرادار أن يكشف ضمنه الأهداف. ولقد تم خلال الحرب العالمية الثانية (1939-1945م) تطوير الرادارات بشكل كبير جدا بسبب الحاجة الماسة لها وقد تمكن الأمريكان من تصنيع رادار يعمل على تردد ثلاثة جيقاهيرتز باستخدام المجنيترون بينما كانت جميع الرادارات الألمانية تعمل على ترددات دون واحد جيقاهيرتز مما ساعد في انتصار الحلفاء على ألمانيا. وفي عام 1946م تم استخدام الرادار لقياس بعد القمر عن الأرض. وخلال السنوات التي تلت الحرب بدأ باستخدام الرادارات في التطبيقات المدنية المختلفة كمراقبة الملاحة الجوية والبحرية وفي الأرصاد الجوية وفي استكشاف الفضاء ودراسة التضاريس الأرضية. وفي عام 1954م تم إنتاج أول رادار يعمل بنظام دوبلر حيث يمكنه تحديد سرعة الأهداف المتحركة. ومع ظهور الحواسيب والمتحكمات الدقيقة ومعالجات الإشارات الرقمية طرأت تحسينات كثيرة على أنظمة الرادار من حيث التحكم بالرادار لغرض متابعة الأهداف ومن حيث القدرة على استخلاص معلومات كثيرة من الإشارات المرتدة عن الأهداف. خلال الحرب الباردة بين القطبين كانت الأقمار الاصطناعية تعتبر من الإنجازات العلمية التي يحيطها هالة كبيرة من السرية والغموض حيث انحصر استخدامها في بادئ الأمر على الأغراض العسكرية فقط مثل أعمال الملاحة البحرية والمراقبة الجوية وعمليات التجسس، أما الآن فقد أصبحت تمثل جزءا ضروريا من حياتنا اليومية وتعددت استخداماتها لتشمل مجالات عديدة مثل الاستعانة بها للتنبؤ بالأحوال الجوية والاستقبال التلفزيوني الفضائي فضلا عن الاتصالات الهاتفية التي تتم بين الملايين من الناس بمختلف دول العالم.
(الشكل 1) مخطط توضيحي لمبدأ عمل الأجهزة الرادارية
جهاز الاستشعار «المستشعر» sensor:
جهاز الاستشعار هو أداة يمكنها أن تستقبل وتسجل الأشعة المنعكسة عن المادة المدروسة أو المنبعثة منها ضمن مجال طيفي واحد أو عدة مجالات طيفية (الشكل 1). وقد تم تصميم مستشعرات خاصة لدراسة الأرض من الفضاء تتلاءم مع النوافذ الجوية. وفي حالات خاصة يتم تصميم مستشعرات نوعية تتلاءم مع الجو أو طبيعة الدراسة، ويمكن تقسيم المستشعرات إلى ما يلي: ـ كاميرات الفيديو والتصوير الجوي وكاميرات التصوير الفضائي. ـ أجهزة قياس الأشعة (الراديومتر) التي تسجل الأشعة ضمن نطاقات طيفية معينة. ـ أجهزة قياس الطيف (سبيكترومتر) التي تسجل الأشعة ضمن مجال طيفي معين. ـ المواسح مثل الماسح المتعدد الأطياف S.S.M والماسح الغرضي (أو الموضوعي) M.T المحمولة على متن السواتل لاندسات، وهذه المواسح لاتستخدم أفلام التصوير في تسجيل الأشعة ولكن تقوم بعملية مسح لمنطقة منتظمة من الأرض، وقد مكَّن هذا النظام من تسجيل المعطيات على أقراص حاسوب ممغنطة باستخدام أرقام افتراضية تمثل مختلف الشدات اللونية للأهداف المدروسة، وتراوح قيم هذه الشدات بين 0 و255 درجة من اللون الرمادي لمختلف المجالات الطيفية ويتم تسجيل شدة السطوع لأصغر مساحة يمكن تمييزها على الأرض. ولكل مستشعر أربع قدرات تمييز هي: ـ قدرة التمييز المكاني: وهي أصغر مساحة يمكن أن يميزها المستشعر على سطح الأرض وتدعى عنصر الصورة pixel. ـ قدرة التمييز الطيفي: وهي عدد النطاقات الطيفية التي يمكن أن يسجلها المستشعر. ـ قدرة التمييز الإشعاعي: وهي أصغر كمية من الطاقة يمكن أن يسجلها المستشعر، والقيمة الإشعاعية أو شدة سطوع عنصر الصورة «البيكسل» هي معدل القيمة الإشعاعية الواردة من أجزاء البيكسل كافة. ـ قدرة التمييز الزمني: وهي المدة الزمنية الفاصلة بين المسح والآخر للمنطقة نفسها. أي المدة الفاصلة بين الزيارة والأخرى للمنطقة من قبل الساتل الصنعي. وتجدر الإشارة إلى أن المستشعرات تقسم إلى نوعين من حيث اعتمادها على مصدر الطاقة.
العناصر الفيزيائية للاستشعار عن بُعد:
مصدر الطاقة: ليس الضوء المرئي وحده شكلاً من أشكال الطاقة الكهرمغنطيسية، فالأشعة تحت الحمراء والأشعة فوق البنفسجية والأشعة السينية وأشعة غاما هي أشكال أخرى مألوفة لهذه الطاقة تشع طبقاً لنظرية الموجات الكهرمغنطيسية الأساسية (الشكل2 ).
الشكل 2: طيف الموجات الكهرمغنطيسية
الشكل 3 مخطط توضيحي لجميع نطق ترددات الانظمة الرادارية وبما فيها الأقمار الصناعية
الاستشعار عن بُعد remote sensing
يعرف الاستشعار عن بعد بأنة مجموعة التقنيات والوسائل المتقدمة التي تستخدم لدراسة الظاهرات علي سطح الارض او اي كوكب اخر عن بعد دون ان يكون هنالك تماس فيزيائي مباشر معهما عن طريق متحسسات خاصة محمولة على متن أقمار اصطناعية أو طائرات خاصة. حيث ان هذة المستشعرات عبارة عن ماسحات إلكترونية وكاميرات متحسسة لعدة أطياف كهرومغناطيسية أو أجهزه التقاط رادارية وحرارية أو ليزرية وغيرها . وتستخدم هذه المستشعرات مجالات مختلفة من الطيف الكهرومغناطيسي يبداء من الاشعة تحت البنفسجية مرورا بالطيف المرئي و الاشعة تحت الحمراء والرادر وغيرها. حيث تهدف عملية المسح الطيفي لتحديد خصائص الهدف او الظاهرة المدروسة حيث تستقبل المعلومات المسجلة بواسطة القمر الاصطناعي في محطات الاستقبال الأرضية ثم تعالج بواسطة الحاسبات طبقاً لأنظمة وبرامج خاصة يتم تقديمها على شكل صور فضائية رقمية ليتم تحليلها إحصائياً أو بصريا لتعرض نتائجها علي هيئة تقرير يحوي احصائات وخرائط متعددة الاستخدامات.
الشكل (4) تسلسل عمليات الاستشعار عن بُعد وعناصرها
ادوات الاستشعار عن بعد
تستخدم الرادارات المحمولة بالأقمار الصناعية والطائرات لدراسة سطح الأرض وما عليه من مكونات وذلك من خلال إرسال نبضات كهرومغناطيسية بترددات معينة ومن ثم التقاط النبضات المرتدة عن سطح الأرض والقيام بتحليلها باستخدام معالجات الإشارات الرقمية لرسم صور عن المنطقة الممسوحة. وتستخدم هذه الصور لاستخلاص معلومات مهمة عن طبيعة الأرض التي تم مسحها من قبل شعاع الرادار ومن هذه المعلومات طبيعة التضاريس الأرضية وطبوغرافيتها ونوع الغابات والنباتات والمحاصيل المزروعة والآفات الزراعية والظروف المناخية والبيئية والبراكين والأعاصير والفياضانات والثروات المعدنية والمياه الجوفية والبترول . ويوجد أنواع مختلفة من رادارات الاستشعار عن بعد يتم تصميمها بناءا على نوع المعلومات المراد استشعارها وغالبا ما يعتمد هذا على مقدار التردد المستخدم في الرادار فالبحث عن ثروات الأرض يتطلب استخدام ترددات تقل عن واحد جيقاهيرتز وذلك لقدرتها على اختراق سطح الأرض بينما يتطلب رسم خارطة طبوغرافية ترددادت أعلى من ذلك بكثير للحصول قدرة تمييز عالية لتضاريس الأرض .
الطائرة لوكهيد TR-1 للاستشعار عن بعد.
الاقمار الصناعية:حيث يتم تحميل القمر الاصطناعي على صاروخ معد خصيصا لهذه الأغراض حيث يقوم الصاروخ باختراق الغلاف الجوي للكرة الأرضية بسرعة خارقة متجها نحو المدار الفضائي المحدد له بواسطة أجهزة تحكم تقوم بتوجيه الصاروخ يمينا أو شمالا، شرقا أو غربا، وعندما تصل سرعة الصاروخ إلى 120ميل/ساعة (أي ما يعادل 193 كيلومتر/ساعة) تقوم الأجهزة الملاحية بالصاروخ بتعديل الوضع ليصبح رأسيا وعندها يتم تثبيت القمر الاصطناعي في المدار المحدد له . ويعتبر التصوير الطيفي بالأقمار الصناعية ومنها سلسلة لاند سات ـ التي أطلق أولها عام 1972 ـ من أحدث طرق المسح الجيولوجي(استخدمت صور أقمار لاند سات لحوض أناداركو Anadarco Basin الممتد بين ولايتي أوكلاهوما وتكساس لتحديد 59 حقلا بتروليا منتجاً، كما استخدمت صور لاند سات في خمسة حقول في العالم العربي هي حقل الغوار السعودي، وحقل البرقان الكويتي، وحقل بوزرغان العراقي، وحقل المسلة الليبي، وحقل البرمة التونسي.)، لدراسة ثروات الأرض المعدنية والبترولية، ويمكن بواسطتها تحديد مناطق تسرب البترول إلى السطح، وأماكن الصدوع والطيات واستراتيجرافية الإقليم. ويمكن تدقيق المعلومات المرجحة عن التراكيب الجيولوجية بواسطة أنظمة التصوير الراداري المحمولة بواسطة الأقمار الصناعية، والتي تعمل ليلاً ونهاراً، ولا تتأثر بالسحب، وتتيح تحديد الأحواض الرسوبية، والاختيار السليم لمواقع المسح الجيوفيزيقي التالي للمسح الجيولوجي.
صورة قمر صناعي معالجة بالالوان
رادارات الاختراق الأرضي ((Ground Penetrating Radar :يستخدم الرادار الخارق للأرض في تطبيقات لا حصر لها في الجيولوجيا لمعرفة عمق وسمك الطبقات الصخرية وأنواع التربة والرواسب ووضع خرائط للتراكيب الجيولوجية وتحديد الكهوف والشقوق الطبيعية والصدوع وكشف المياه الجوفية وآبار البترول والغاز. ويستخدم في التطبيقات البيئية لكشف التسريبات في خزانات المياه ووضع خرائط لمراقبة المواد الملوثة في المياه السطحية وكشف مواقع دفن النفايات وتحديد مواقع خزانات الوقود المدفونة وبراميل الزيت وتحديد مواقع التسربات النفطية. ويستخدم في مجال الهندسة المدنية لعمل الاختبارات الخرسانية وتحليل رصف الطرق وتحديد الفراغات وقوة الرصف وتحديد مواقع المرافق العامة المدفونة مثل أنابيب المياه والمجاري الحديدية والبلاستيكية والخرسانية وكذلك الكيبلات الكهربائية والهاتفية. ويستخدم في مجال الآثار لتحديد مواقع الأشياء المعدنية المدفونة كالكنوز ومواقع الكهوف السطحية والآبار والأجسام الأثرية. ويستخدم في التطبيقات العسكرية لكشف حقول الألغام بشكل عام والكشف عن مكان اللغم بالتحديد. وتستخدم الرادارات في تطبيقات أخرى يصعب حصرها حيث تستخدمه الشرطة في قياس سرعة المركبات على الطرق لضمان عدم تجاوزها السرعات المقررة. وتستخدم في أنظمة الكشف والمتابعة الفضائية حيث تقوم الرادارات بتوجيه الصواريخ الحاملة للأقمار الصناعية والمركبات الفضائية منذ انطلاقها إلى أن تضعها في مداراتها وتقوم بمراقبة الأقمار الصناعية والتأكد من بقائها في المواقع المخصصة لها في مداراتها. وتستخدم بعض أنواع الرادارات البسيطة في المركبات الحديثة لتنبيه وتحذير السائق عند الاقتراب الشديد لمركبته من المركبات الأخرى والأرصفة والحواجز وذلك لتجنيبه الاصطدام بها. وتستخدم كذلك في مراقبة ومتابعة الأجسام التي تأتي من الفضاء الخارجي وتقترب من الأرض كالمذنبات والشهب والنيازك وغيرها. وقد تم استخدام الرادار لدراسة سطح القمر ومعرفة كامل تضاريسه قبل إرسال المركبات الفضائية إليه وهبوطها عليه. وتستخدم الرادارات في بعض أنظمة الإنسان الآلي المتحركة وفي المركبات التي تم إنزالها على أسطح الكواكب لتجنيبها الاصطدام بما حولها من أجسام.
تقنية رادار الاختراق الأرضي :
رادار الاختراق الارضي ( GBR ) يعمل على ارسال نبضات كهرومغناطيسية التي تنعكس من " الهدف " ويعود الى الملتقي ويمكن استخدامه لمراقبة ما يحدث تحت السط من خلال تثبيته بعمق ضحل بحيث يعمل على ارسال معلومات مباشرة من الحقل بصورة مستمرة .
ويستخدم GBR في تحديد صهاريج التخزين تحت الارض والانابيب والمرافق , والخنادق , وغيرها من المواد المدفونه . لرسم الخرائط الطبقية ويمكن استخدامه لرسم الطبقات الضحلة الاخرى كما يستخدم GBR في التحقيقات الأثرية ويعمل GBR بـ أستخدام التردد العالي ( اقصر طول موجي ) والهوائيات وتشمل تطبيقات GBR تفتيش الرصيف وسمك الخرسانه وحديد التسليح والتفتيش عن الفراغات ورسم الخرائط تحت الرصيف او الكتل الخرسانية.
رادار الاختراق الارضي مثل تقنيات الرادارات الاخرى يستخدم لاكهرومغناطيس ( راديو موجة او الميكرويف ) حيث أنالموجات لاكهرومغناطيس هو من ادنى تردد ( 80 - 500 ميغارهيترز ) وذلك للحصول على افضل تغلل في مواد الارض .
الصورة اعلاه توضح بعض الامثلة على ملامح GBR مشترك , المقياس العامودي هو المقياس الزمني واعطاء الوقت لنبض رادار للسفر وصولا الى المعاكس والعودة الى الهوائي . ومن خلال معرفة سرعة النبض في التربة يمكن التوصل للعمق مقياس افقي يتوافق مع المسافة.
GBR هو في المقام الأول أداة للتحقيق في مناطق مختارة للحصول على تفاصيل ملامح ما تحت سطح الارض بصورة مستمرة حيث تعطي صورة ممتازة الرسم عن الظروف تحت السطحية الضحلة وعلاوة على ذلك وخلافا لبعض التقنيات الاخرى فأن تقنية GBR لا تتطلب من الاهداف ان تكون معدنية او موصلة , وعمق GBR التنقيبي يعتمد بقوة على موصلية التربة والظروف تحت السطحية .
تمهيد
في هذا العصر المتسم بالتطور و التقدم في مجالات المعرفة الإنسانية و التغيرات العظيمة في مجالات الاتصال و التكنولوجيا ، و عظم المنافسة الاقتصادية ، صار التوجه نحو دفع الكفاءة متطلباً و هدفاً أساسياً لكل المؤسسات و الدول و أصبح لزاماً على كل من أراد التفوق و التقدم على كافة الأصعدة العلمية و الوظيفية ، أن يتسلح بالمعرفة المتعمقة ، و المقدرات المتنوعة و القابلية و المواكبة و المنافسة . لقد غدونا في عصر لا يعرف اليأس و أضحت فيه التقانات تجدد بمتواليات هندسية و أخذت المعرفة تتسارع مع الأنفاس و غدا الشعار في كل مكان: "المعرفة هي القوة ، التكنولوجيا هي المحرك" وفي المشاريع الهندسية لا يعتمد نجاح هذه المشاريع على المعرفة العلمية و العملية بالعلوم الهندسية فقط ، بل لا بد لإنجاح هذه المشاريع الهندسية و خاصة في مجال استكشاف و استخراج الخامات من ربط المعلومات الهندسية بمعلومات وفيرة في مجالات الإدارة و الاقتصاد و أدوات اتخاذ القرار و هكذا لا يتم اتخاذ قرار تنفيذ هذه المشاريع الضخمة إلا و فق معطيات الجدوى الاقتصادية. و حتى يتم تحديد دراسة جدوى المشاريع التعدينية يتطلب ذلك دراسة جيولوجية كاملة عن المنطقة بما يسمى (Regional geology) ثم يتتبعها البحث الجيوكيميائي (Geochemistry) و البحث الجيوفيزيقي (Geophysics) و الكثير من العمليات مثل الاستشعار عن بعد (Remotesence) و الذي أتاح الحصول على ملايين المرئيات التي إستخدمت لدراسة و تقييم موارد الأرض الطبيعية والمراقبات الملاحية والميدانية والاستخدامات الاستراتيجية و العسكرية لابعد مدى و التعمق في اقاصي الفضاء الخارجي بسرعة الضوء نفسه.
عودة تاريخية الى نشأءة علم الاستشعار
يعتبر أبسط أجهزة الاستشعار عن بعد حالياً هي آلة التصوير العادية
التي تستخدم الضوء المنعكس عن الأجسام تماماً كالعين البشرية وقد شرحت الآلية مسبقاً مند حوالى سنة411ه/1021م على يد العالم العربي المسلم ومؤسس علم البصريات ابن الهيثم. لتظهر بعد تطورات خاطفة لعلم الضوئيات 1887م ظهرت فكرة استخدام الموجات الكهرومغناطيسية لكشف الأهداف مع اكتشاف الأمواج الكهرومغناطيسية على يد الفيزيائي الألماني هنيرتش هيرتز (Heinrich Hertz) والذي اكتشف أيضا أن هذه الأمواج تنعكس عند اصطدامها بالأجسام المعدنية والعازلة. وفي عام 1903م تمكن المهندس الألماني كريستيان هولسماير (Christian Hulsmeyer) من إجراء تجربه تمكن من خلالها كشف وجود سفينة من خلال الضباب ولكن دون تحديد المسافة. وفي عام 1921م تمكن ألبرت هول (Albert Hull) من اختراع أول أشكال الصمام الإلكتروني المسمى بالمجنيترون (Magnetron) وهو مذبذب قادر على توليد ترددات عالية جدا وبقدرات عالية. وفي عام 1922م ظهر أول نظام لرادار طويل المدى نسبيا على يـــدي العـــالم الايطالي المشهور ماركوني (Marconi). وفي عام 1930م تمكن المهندس الأمريكي هايلاند (Lawrence A. Hyland) وهو في مختبر البحرية الأمريكية من كشف أول طائرة باستخدام ما يسمى نظام كشف الأهداف بالراديو (الأمواج الكهرومغناطيسية) وكان التردد المستخدم ثلاثة وثلاثين ميجاهيرتز. وفي عام 1934م تمكنت البحرية الأمريكية من تصميم أول رادار نبضي لكشف وجود الطائرات دون تحديد بعدها وكان يعمل على تردد ستين ميجاهيرتز وقد وصل مداه لأربعين كيلومتر. وفي 1935 حصل العالم الإنكليزي واتسون واط (Watson-Watt) على براءة اختراع لرادار يستطيع أن يحدد المسافة. وفي عام 1936م تم اختراع صمام إلكتروني آخر وهو الكلايسترون (Klystron) والذي يستخدم لتوليد وتضخيم الإشارات في نطاق الأمواج الدقيقة وقد لعب مع الميجنيترون دورا كبيرا في تطوير أنظمة الرادار الحديثة. وفي عام 1937م تم تركيب أول رادار على ظهر المدمرة الأمريكية "ليري" وظهرت كذلك الرادارات التي تتحكم في المدافع المضادة للطائرات الحربية ورادارات الإنذار المبكر بعيدة المدى. وفي عام 1939م تم اختراع المجنيترون ذي الفجوة (cavity magnetron) على يد المهندسين البريطانيين جون راندال وهاري بوت (John Randall & Harry Boot) وهذا المولد وعلى العكس من المجنيترون العادي قادر على توليد ترددات في منطقة الميكروويف وقادر كذلك على إنتاج قدرات كبيرة جدا تصل لمئات الكيلوطات. لقد كان هذا الاختراع الأساس التي قامت عليه أنظمة الرادار الحديث حيث تتطلب الرادارات ترددات وقدرات بث عالية جدا فالترددات العالية تلزم لتصغير حجم الهوائيات وكذلك لتقليل عرض أشعة الرادار لزيادة دقة تحديد موقع الهدف أما قدرات البث العالية فتلزم لزيادة المدى الذي يمكن للرادار أن يكشف ضمنه الأهداف. ولقد تم خلال الحرب العالمية الثانية (1939-1945م) تطوير الرادارات بشكل كبير جدا بسبب الحاجة الماسة لها وقد تمكن الأمريكان من تصنيع رادار يعمل على تردد ثلاثة جيقاهيرتز باستخدام المجنيترون بينما كانت جميع الرادارات الألمانية تعمل على ترددات دون واحد جيقاهيرتز مما ساعد في انتصار الحلفاء على ألمانيا. وفي عام 1946م تم استخدام الرادار لقياس بعد القمر عن الأرض. وخلال السنوات التي تلت الحرب بدأ باستخدام الرادارات في التطبيقات المدنية المختلفة كمراقبة الملاحة الجوية والبحرية وفي الأرصاد الجوية وفي استكشاف الفضاء ودراسة التضاريس الأرضية. وفي عام 1954م تم إنتاج أول رادار يعمل بنظام دوبلر حيث يمكنه تحديد سرعة الأهداف المتحركة. ومع ظهور الحواسيب والمتحكمات الدقيقة ومعالجات الإشارات الرقمية طرأت تحسينات كثيرة على أنظمة الرادار من حيث التحكم بالرادار لغرض متابعة الأهداف ومن حيث القدرة على استخلاص معلومات كثيرة من الإشارات المرتدة عن الأهداف. خلال الحرب الباردة بين القطبين كانت الأقمار الاصطناعية تعتبر من الإنجازات العلمية التي يحيطها هالة كبيرة من السرية والغموض حيث انحصر استخدامها في بادئ الأمر على الأغراض العسكرية فقط مثل أعمال الملاحة البحرية والمراقبة الجوية وعمليات التجسس، أما الآن فقد أصبحت تمثل جزءا ضروريا من حياتنا اليومية وتعددت استخداماتها لتشمل مجالات عديدة مثل الاستعانة بها للتنبؤ بالأحوال الجوية والاستقبال التلفزيوني الفضائي فضلا عن الاتصالات الهاتفية التي تتم بين الملايين من الناس بمختلف دول العالم.
(الشكل 1) مخطط توضيحي لمبدأ عمل الأجهزة الرادارية
جهاز الاستشعار «المستشعر» sensor:
جهاز الاستشعار هو أداة يمكنها أن تستقبل وتسجل الأشعة المنعكسة عن المادة المدروسة أو المنبعثة منها ضمن مجال طيفي واحد أو عدة مجالات طيفية (الشكل 1). وقد تم تصميم مستشعرات خاصة لدراسة الأرض من الفضاء تتلاءم مع النوافذ الجوية. وفي حالات خاصة يتم تصميم مستشعرات نوعية تتلاءم مع الجو أو طبيعة الدراسة، ويمكن تقسيم المستشعرات إلى ما يلي: ـ كاميرات الفيديو والتصوير الجوي وكاميرات التصوير الفضائي. ـ أجهزة قياس الأشعة (الراديومتر) التي تسجل الأشعة ضمن نطاقات طيفية معينة. ـ أجهزة قياس الطيف (سبيكترومتر) التي تسجل الأشعة ضمن مجال طيفي معين. ـ المواسح مثل الماسح المتعدد الأطياف S.S.M والماسح الغرضي (أو الموضوعي) M.T المحمولة على متن السواتل لاندسات، وهذه المواسح لاتستخدم أفلام التصوير في تسجيل الأشعة ولكن تقوم بعملية مسح لمنطقة منتظمة من الأرض، وقد مكَّن هذا النظام من تسجيل المعطيات على أقراص حاسوب ممغنطة باستخدام أرقام افتراضية تمثل مختلف الشدات اللونية للأهداف المدروسة، وتراوح قيم هذه الشدات بين 0 و255 درجة من اللون الرمادي لمختلف المجالات الطيفية ويتم تسجيل شدة السطوع لأصغر مساحة يمكن تمييزها على الأرض. ولكل مستشعر أربع قدرات تمييز هي: ـ قدرة التمييز المكاني: وهي أصغر مساحة يمكن أن يميزها المستشعر على سطح الأرض وتدعى عنصر الصورة pixel. ـ قدرة التمييز الطيفي: وهي عدد النطاقات الطيفية التي يمكن أن يسجلها المستشعر. ـ قدرة التمييز الإشعاعي: وهي أصغر كمية من الطاقة يمكن أن يسجلها المستشعر، والقيمة الإشعاعية أو شدة سطوع عنصر الصورة «البيكسل» هي معدل القيمة الإشعاعية الواردة من أجزاء البيكسل كافة. ـ قدرة التمييز الزمني: وهي المدة الزمنية الفاصلة بين المسح والآخر للمنطقة نفسها. أي المدة الفاصلة بين الزيارة والأخرى للمنطقة من قبل الساتل الصنعي. وتجدر الإشارة إلى أن المستشعرات تقسم إلى نوعين من حيث اعتمادها على مصدر الطاقة.
العناصر الفيزيائية للاستشعار عن بُعد:
مصدر الطاقة: ليس الضوء المرئي وحده شكلاً من أشكال الطاقة الكهرمغنطيسية، فالأشعة تحت الحمراء والأشعة فوق البنفسجية والأشعة السينية وأشعة غاما هي أشكال أخرى مألوفة لهذه الطاقة تشع طبقاً لنظرية الموجات الكهرمغنطيسية الأساسية (الشكل2 ).
الشكل 2: طيف الموجات الكهرمغنطيسية
الشكل 3 مخطط توضيحي لجميع نطق ترددات الانظمة الرادارية وبما فيها الأقمار الصناعية
الاستشعار عن بُعد remote sensing
يعرف الاستشعار عن بعد بأنة مجموعة التقنيات والوسائل المتقدمة التي تستخدم لدراسة الظاهرات علي سطح الارض او اي كوكب اخر عن بعد دون ان يكون هنالك تماس فيزيائي مباشر معهما عن طريق متحسسات خاصة محمولة على متن أقمار اصطناعية أو طائرات خاصة. حيث ان هذة المستشعرات عبارة عن ماسحات إلكترونية وكاميرات متحسسة لعدة أطياف كهرومغناطيسية أو أجهزه التقاط رادارية وحرارية أو ليزرية وغيرها . وتستخدم هذه المستشعرات مجالات مختلفة من الطيف الكهرومغناطيسي يبداء من الاشعة تحت البنفسجية مرورا بالطيف المرئي و الاشعة تحت الحمراء والرادر وغيرها. حيث تهدف عملية المسح الطيفي لتحديد خصائص الهدف او الظاهرة المدروسة حيث تستقبل المعلومات المسجلة بواسطة القمر الاصطناعي في محطات الاستقبال الأرضية ثم تعالج بواسطة الحاسبات طبقاً لأنظمة وبرامج خاصة يتم تقديمها على شكل صور فضائية رقمية ليتم تحليلها إحصائياً أو بصريا لتعرض نتائجها علي هيئة تقرير يحوي احصائات وخرائط متعددة الاستخدامات.
الشكل (4) تسلسل عمليات الاستشعار عن بُعد وعناصرها
ادوات الاستشعار عن بعد
تستخدم الرادارات المحمولة بالأقمار الصناعية والطائرات لدراسة سطح الأرض وما عليه من مكونات وذلك من خلال إرسال نبضات كهرومغناطيسية بترددات معينة ومن ثم التقاط النبضات المرتدة عن سطح الأرض والقيام بتحليلها باستخدام معالجات الإشارات الرقمية لرسم صور عن المنطقة الممسوحة. وتستخدم هذه الصور لاستخلاص معلومات مهمة عن طبيعة الأرض التي تم مسحها من قبل شعاع الرادار ومن هذه المعلومات طبيعة التضاريس الأرضية وطبوغرافيتها ونوع الغابات والنباتات والمحاصيل المزروعة والآفات الزراعية والظروف المناخية والبيئية والبراكين والأعاصير والفياضانات والثروات المعدنية والمياه الجوفية والبترول . ويوجد أنواع مختلفة من رادارات الاستشعار عن بعد يتم تصميمها بناءا على نوع المعلومات المراد استشعارها وغالبا ما يعتمد هذا على مقدار التردد المستخدم في الرادار فالبحث عن ثروات الأرض يتطلب استخدام ترددات تقل عن واحد جيقاهيرتز وذلك لقدرتها على اختراق سطح الأرض بينما يتطلب رسم خارطة طبوغرافية ترددادت أعلى من ذلك بكثير للحصول قدرة تمييز عالية لتضاريس الأرض .
الطائرة لوكهيد TR-1 للاستشعار عن بعد.
الاقمار الصناعية:حيث يتم تحميل القمر الاصطناعي على صاروخ معد خصيصا لهذه الأغراض حيث يقوم الصاروخ باختراق الغلاف الجوي للكرة الأرضية بسرعة خارقة متجها نحو المدار الفضائي المحدد له بواسطة أجهزة تحكم تقوم بتوجيه الصاروخ يمينا أو شمالا، شرقا أو غربا، وعندما تصل سرعة الصاروخ إلى 120ميل/ساعة (أي ما يعادل 193 كيلومتر/ساعة) تقوم الأجهزة الملاحية بالصاروخ بتعديل الوضع ليصبح رأسيا وعندها يتم تثبيت القمر الاصطناعي في المدار المحدد له . ويعتبر التصوير الطيفي بالأقمار الصناعية ومنها سلسلة لاند سات ـ التي أطلق أولها عام 1972 ـ من أحدث طرق المسح الجيولوجي(استخدمت صور أقمار لاند سات لحوض أناداركو Anadarco Basin الممتد بين ولايتي أوكلاهوما وتكساس لتحديد 59 حقلا بتروليا منتجاً، كما استخدمت صور لاند سات في خمسة حقول في العالم العربي هي حقل الغوار السعودي، وحقل البرقان الكويتي، وحقل بوزرغان العراقي، وحقل المسلة الليبي، وحقل البرمة التونسي.)، لدراسة ثروات الأرض المعدنية والبترولية، ويمكن بواسطتها تحديد مناطق تسرب البترول إلى السطح، وأماكن الصدوع والطيات واستراتيجرافية الإقليم. ويمكن تدقيق المعلومات المرجحة عن التراكيب الجيولوجية بواسطة أنظمة التصوير الراداري المحمولة بواسطة الأقمار الصناعية، والتي تعمل ليلاً ونهاراً، ولا تتأثر بالسحب، وتتيح تحديد الأحواض الرسوبية، والاختيار السليم لمواقع المسح الجيوفيزيقي التالي للمسح الجيولوجي.
صورة قمر صناعي معالجة بالالوان
رادارات الاختراق الأرضي ((Ground Penetrating Radar :يستخدم الرادار الخارق للأرض في تطبيقات لا حصر لها في الجيولوجيا لمعرفة عمق وسمك الطبقات الصخرية وأنواع التربة والرواسب ووضع خرائط للتراكيب الجيولوجية وتحديد الكهوف والشقوق الطبيعية والصدوع وكشف المياه الجوفية وآبار البترول والغاز. ويستخدم في التطبيقات البيئية لكشف التسريبات في خزانات المياه ووضع خرائط لمراقبة المواد الملوثة في المياه السطحية وكشف مواقع دفن النفايات وتحديد مواقع خزانات الوقود المدفونة وبراميل الزيت وتحديد مواقع التسربات النفطية. ويستخدم في مجال الهندسة المدنية لعمل الاختبارات الخرسانية وتحليل رصف الطرق وتحديد الفراغات وقوة الرصف وتحديد مواقع المرافق العامة المدفونة مثل أنابيب المياه والمجاري الحديدية والبلاستيكية والخرسانية وكذلك الكيبلات الكهربائية والهاتفية. ويستخدم في مجال الآثار لتحديد مواقع الأشياء المعدنية المدفونة كالكنوز ومواقع الكهوف السطحية والآبار والأجسام الأثرية. ويستخدم في التطبيقات العسكرية لكشف حقول الألغام بشكل عام والكشف عن مكان اللغم بالتحديد. وتستخدم الرادارات في تطبيقات أخرى يصعب حصرها حيث تستخدمه الشرطة في قياس سرعة المركبات على الطرق لضمان عدم تجاوزها السرعات المقررة. وتستخدم في أنظمة الكشف والمتابعة الفضائية حيث تقوم الرادارات بتوجيه الصواريخ الحاملة للأقمار الصناعية والمركبات الفضائية منذ انطلاقها إلى أن تضعها في مداراتها وتقوم بمراقبة الأقمار الصناعية والتأكد من بقائها في المواقع المخصصة لها في مداراتها. وتستخدم بعض أنواع الرادارات البسيطة في المركبات الحديثة لتنبيه وتحذير السائق عند الاقتراب الشديد لمركبته من المركبات الأخرى والأرصفة والحواجز وذلك لتجنيبه الاصطدام بها. وتستخدم كذلك في مراقبة ومتابعة الأجسام التي تأتي من الفضاء الخارجي وتقترب من الأرض كالمذنبات والشهب والنيازك وغيرها. وقد تم استخدام الرادار لدراسة سطح القمر ومعرفة كامل تضاريسه قبل إرسال المركبات الفضائية إليه وهبوطها عليه. وتستخدم الرادارات في بعض أنظمة الإنسان الآلي المتحركة وفي المركبات التي تم إنزالها على أسطح الكواكب لتجنيبها الاصطدام بما حولها من أجسام.
تقنية رادار الاختراق الأرضي :
رادار الاختراق الارضي ( GBR ) يعمل على ارسال نبضات كهرومغناطيسية التي تنعكس من " الهدف " ويعود الى الملتقي ويمكن استخدامه لمراقبة ما يحدث تحت السط من خلال تثبيته بعمق ضحل بحيث يعمل على ارسال معلومات مباشرة من الحقل بصورة مستمرة .
ويستخدم GBR في تحديد صهاريج التخزين تحت الارض والانابيب والمرافق , والخنادق , وغيرها من المواد المدفونه . لرسم الخرائط الطبقية ويمكن استخدامه لرسم الطبقات الضحلة الاخرى كما يستخدم GBR في التحقيقات الأثرية ويعمل GBR بـ أستخدام التردد العالي ( اقصر طول موجي ) والهوائيات وتشمل تطبيقات GBR تفتيش الرصيف وسمك الخرسانه وحديد التسليح والتفتيش عن الفراغات ورسم الخرائط تحت الرصيف او الكتل الخرسانية.
رادار الاختراق الارضي مثل تقنيات الرادارات الاخرى يستخدم لاكهرومغناطيس ( راديو موجة او الميكرويف ) حيث أنالموجات لاكهرومغناطيس هو من ادنى تردد ( 80 - 500 ميغارهيترز ) وذلك للحصول على افضل تغلل في مواد الارض .
الصورة اعلاه توضح بعض الامثلة على ملامح GBR مشترك , المقياس العامودي هو المقياس الزمني واعطاء الوقت لنبض رادار للسفر وصولا الى المعاكس والعودة الى الهوائي . ومن خلال معرفة سرعة النبض في التربة يمكن التوصل للعمق مقياس افقي يتوافق مع المسافة.
GBR هو في المقام الأول أداة للتحقيق في مناطق مختارة للحصول على تفاصيل ملامح ما تحت سطح الارض بصورة مستمرة حيث تعطي صورة ممتازة الرسم عن الظروف تحت السطحية الضحلة وعلاوة على ذلك وخلافا لبعض التقنيات الاخرى فأن تقنية GBR لا تتطلب من الاهداف ان تكون معدنية او موصلة , وعمق GBR التنقيبي يعتمد بقوة على موصلية التربة والظروف تحت السطحية .
تعليق